
PDSW24 | 2024-11-17

MOSAIC: DETECTION AND
CATEGORIZATION OF I/O PATTERNS IN

HPC APPLICATIONS
Théo Jolivel, François Tessier, Julien Monniot, Guillaume Pallez

Why do we need to optimize HPC storage systems?

Ratio of I/O bandwidth (GBps) to computing power (TFlops) of the top 3 supercomputers
from the Top500 ranking over the past 15 years. Evolution of training dataset's sizes for machine learning applications.

Pablo Villalobos and Anson Ho (2022) "Trends in Training Dataset Sizes"

Motivations Methodology Results Conclusion

2/21

https://epochai.org/blog/trends-in-training-dataset-sizes

How to optimize storage access on supercomputers?
Multiple ways of achieving I/O efficiency (non exhaustive):

Application level: use of advanced I/O mechanisms in applications' codes.
I/O library level: I/O optimizations inside libraries to transparently perform operations efficiently.
Scheduler level: make smart scheduling decisions to avoid concurrency between jobs.
Storage level: adopt I/O-aware policies (e.g. data distribution) within the parallel file system (PFS).

Fundamental prerequisite: have a good understanding of how HPC applications behave.

I/O
Traces

job 1

job 2

job n

class 1

class 2

class m

time

I/O
 a

ct
iv

ity

time

I/O
 a

ct
iv

ity

time

I/O
 a

ct
iv

ity

Motivations Methodology Results Conclusion

3/21

How to optimize storage access on supercomputers?

We introduce MOSAIC: an I/O-aware categorization tool able to describe access patterns
from I/O traces, including: access temporality, periodicity and metadata overhead.

Fundamental prerequisite: have a good understanding of how HPC applications behave.

I/O
Traces

job 1

job 2

job n

class 1

class 2

class m

time

I/O
 a

ct
iv

ity

time

I/O
 a

ct
iv

ity

time

I/O
 a

ct
iv

ity

Motivations Methodology Results Conclusion

3/21

TRACE PROCESSING METHODOLOGY

Motivations Methodology Results Conclusion

4/21

MOSAIC trace processing workflow

Pre-processing
1

Darshan
Traces

Pre-processing: go through every Darshan trace file to retain only one representative trace for each unique
execution (user, execution cmd).

Motivations Methodology Results Conclusion

5/21

MOSAIC trace processing workflow

Merging2

Concurrent
operationsa

Neighborsb

Pre-processing
1

Darshan
Traces

Merging: fuse concurrent operations and close neighbors to have a linear list of operations (the start of the
next operation is a�er the end of the previous one).

Motivations Methodology Results Conclusion

5/21

MOSAIC trace processing workflow

Metadata c

Periodic a

Temporal b

Categorization 3Merging2

Concurrent
operationsa

Neighborsb

Pre-processing
1

Darshan
Traces

Categorization: process the traces to assign classes about metadata patterns, operation periodicity and
access temporality.

Motivations Methodology Results Conclusion

5/21

MOSAIC trace processing workflow

JSON
output

Result

4
Metadata c

Periodic a

Temporal b

Categorization 3Merging2

Concurrent
operationsa

Neighborsb

Pre-processing
1

Darshan
Traces

Export: save the results in a JSON file for each processed trace. It contains execution metadata, assigned
classes, and list of operations with periodicity.

Motivations Methodology Results Conclusion

5/21

Merging of neighboring operations
Ra

nk
s

Re
ad

in
g

(O
PE

N
 fo

r
ea

ch
 o

pe
ra

tio
n)

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

Timestamp

1. Take the list of
operations.
2. Find the inactive periods

higher than a fraction of
the average idle time
between two operations.

3. Merge operations
between those periods.

Motivations Methodology Results Conclusion

6/21

Merging of neighboring operations
Ra

nk
s

Re
ad

in
g

(O
PE

N
 fo

r
ea

ch
 o

pe
ra

tio
n)

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

Timestamp

1. Take the list of
operations.

2. Find the inactive periods
higher than a fraction of
the average idle time
between two operations.
3. Merge operations

between those periods.

Motivations Methodology Results Conclusion

6/21

Merging of neighboring operations
Ra

nk
s

Re
ad

in
g

(O
PE

N
 fo

r
ea

ch
 o

pe
ra

tio
n)

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

Timestamp

1. Take the list of
operations.

2. Find the inactive periods
higher than a fraction of
the average idle time
between two operations.

3. Merge operations
between those periods.

Motivations Methodology Results Conclusion

6/21

Detection of recurring operations

Timestamp

Ra
nk

s
Re

ad
in

g
(O

PE
N

 fo
r

ea
ch

 o
pe

ra
tio

n)

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30 1. Take the list of merged
operations.
2. Create segments from the

start of a merged
operation to the start of
the next one.

3. Run MeanShi� clustering
algorithm to group
similar segments. All the
segments in the same
group are considered as
being part of the same
periodic operation

Motivations Methodology Results Conclusion

7/21

Detection of recurring operations

Timestamp

Ra
nk

s
Re

ad
in

g
(O

PE
N

 fo
r

ea
ch

 o
pe

ra
tio

n)

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30 1. Take the list of merged
operations.

2. Create segments from the
start of a merged
operation to the start of
the next one.
3. Run MeanShi� clustering

algorithm to group
similar segments. All the
segments in the same
group are considered as
being part of the same
periodic operation

Motivations Methodology Results Conclusion

7/21

Detection of recurring operations

Timestamp

Ra
nk

s
Re

ad
in

g
(O

PE
N

 fo
r

ea
ch

 o
pe

ra
tio

n)

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30 1. Take the list of merged
operations.

2. Create segments from the
start of a merged
operation to the start of
the next one.

3. Run MeanShi� clustering
algorithm to group
similar segments. All the
segments in the same
group are considered as
being part of the same
periodic operation

Motivations Methodology Results Conclusion

7/21

Detection of activity's temporality
Ra

nk
s

Re
ad

in
g

(O
PE

N
 fo

r
ea

ch
 o

pe
ra

tio
n)

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

Timestamp

1. Take the list of merged
operations.
2. Split the trace into four

chunks of equal length.

3. Compute the amount of
Bytes operated in each
chunk.

Motivations Methodology Results Conclusion

8/21

Detection of activity's temporality
Ra

nk
s

Re
ad

in
g

(O
PE

N
 fo

r
ea

ch
 o

pe
ra

tio
n)

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

Timestamp

1. Take the list of merged
operations.

2. Split the trace into four
chunks of equal length.
3. Compute the amount of

Bytes operated in each
chunk.

Motivations Methodology Results Conclusion

8/21

Detection of activity's temporality
By

te
s

Re
ad

02:04
Apr 10, 2019

02:06 02:08 02:10

0

.2GB

.4GB

.6GB

.8GB

1GB

1.2GB

1.4GB

Timestamp

1. Take the list of merged
operations.

2. Split the trace into four
chunks of equal length.

3. Compute the amount of
Bytes operated in each
chunk.

Motivations Methodology Results Conclusion

8/21

Detection of metadata activity

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

Timestamp

Ra
nk

s
Re

ad
in

g

1. Take the list of
operations.
2. For each operation, put

the OPEN and SEEK
operations at the
beginning of it, and the
CLOSE at the end.

3. Assigns the classes if one
or multiple spikes (over a
threshold) are present, if
multiple operations are
done in a window of
multiple seconds.

Motivations Methodology Results Conclusion

9/21

Detection of metadata activity

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

0

20

40

60

80

100

Timestamp

Ra
nk

s
Re

ad
in

g

M
etadata O

perations

1. Take the list of
operations.

2. For each operation, put
the OPEN and SEEK
operations at the
beginning of it, and the
CLOSE at the end.
3. Assigns the classes if one

or multiple spikes (over a
threshold) are present, if
multiple operations are
done in a window of
multiple seconds.

Motivations Methodology Results Conclusion

9/21

Detection of metadata activity

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

0

20

40

60

80

100

Timestamp

Ra
nk

s
Re

ad
in

g

M
etadata O

perations

1. Take the list of
operations.

2. For each operation, put
the OPEN and SEEK
operations at the
beginning of it, and the
CLOSE at the end.

3. Assigns the classes if one
or multiple spikes (over a
threshold) are present, if
multiple operations are
done in a window of
multiple seconds.

Motivations Methodology Results Conclusion

9/21

RESULTS FROM BLUE WATERS' TRACES
(YEAR 2019)

Motivations Methodology Results Conclusion

10/21

Blue Waters

Petascale supercomputer managed by the National Center for
Supercomputing Applications (NCSA) at the University of
Illinois.

Operated from 2013 until late 2021.
27k nodes, 49k CPUs
25PB of storage managed by Lustre

By default, all jobs running on Blue Waters were monitored by
Darshan. Traces from 2013 to 2019 are publicly available.
The traces contain the full list of operations, meaning one can
estimate the I/O activity produced by monitored jobs.

Motivations Methodology Results Conclusion

11/21

Trace Processing flow (Blue Water, year 2019)
Motivations Methodology Results Conclusion

12/21

Temporality classes distribution (read)

Most represented read classes for categorized traces. Estimation of the most represented read classes for all traces.

Read: distribution of categorized representative traces

Read (all): estimation of the repartition of classes for all
the traces in the dataset (weighting of each representative
trace by the number of files it represents)

Low Impact: less than 100MiB read

On Start: most read operations are performed at the
execution's start (first 25%)
Steady: read operations are performed during all
the execution
Unclear: read operations does not follow an obvious
pattern
Before End: read operations are done during all the
execution except for the end (last 25%)

Motivations Methodology Results Conclusion

13/21

Temporality classes distribution (write)

Most represented write classes for categorized traces. Estimation of the most represented write classes for all traces.

Write: distribution of categorized representative traces

Write (all): estimation of the repartition of classes for all
the traces in the dataset (weighting of each representative
trace by the number of files it represents)

Low Impact: less than 100MiB written

On End: most write operations are performed at the
execution's end (last 25%)
Steady: write operations are performed during all
the execution
Unclear: write operations does not follow an obvious
pattern

Motivations Methodology Results Conclusion

14/21

Periodicity classes distribution

Estimation of the executions with periodic read operations. Estimation of the most represented periodic write classes for all traces.

No Periodicity Found: no repeating operation
detected
Periodic: at least 3 times more periodic operations
(≥2 segments grouped) than non periodic ones
Period≈min: periodic, the average period is of the
order of magnitude of the minute
Period≈s: periodic, the average period is of the
order of magnitude of the second
Steady Write: amount of traces classified as
writing during all the execution

Motivations Methodology Results Conclusion

15/21

Metadata classes distribution
Motivations Methodology Results Conclusion

16/21

Classes frequently assigned together

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14
6-read_periodic
7-read_periodic_s
8-read_steady
9-write_insignificant
10-write_on_end

11-write_periodic
12-write_periodic_h
13-write_periodic_min
14-write_steady

1-metadata_high_density
2-metadata_high_spike

4-read_insignificant
5-read_on_start

3-metadata_multiple_spikes

Some notable associations:
95% of applications having no impactful read activity also
has no impactful write activity (4-9).
66% of applications reading at the start also writes at the end
(5-10).
Periodic reads mostly have a period around the second (62%,
6-7), whereas periodic writes usually have a period around
the minute or longer (74%, 11-12 and 11-13).

Motivations Methodology Results Conclusion

17/21

Conclusion

Contributions:
A methodology to detect recurring operations based on clustering: we have worked on a clustering-
based algorithm that groups operations based on their characteristics.
A set of classes to describe I/O patterns: we defined a set of high-level classes characterizing the access
patterns found in I/O traces.
The implementation of a Python tool to categorize Darshan traces: we created MOSAIC, a tool that
automatically processes Darshan traces to assign classes and get insights about the way HPC
applications access the storage system.
A case study using year 2019 of the Blue Waters Darshan dataset: we categorized the traces from 2019
in the Blue Waters dataset and analyzed the distribution of classes to see how the storage system was
used by the applications.

Motivations Methodology Results Conclusion

18/21

Limitations

Example of Darshan heatmaps.
Source:

Main limitations:
Operation aggregation: operations are
aggregated in Darshan traces from the first
open to the last close of a file by a rank. This
loss of accuracy can lead to an underestimation
of periodic operations.
Recent dataset availability: there are very few
publicly available Darshan datasets for a whole
system. We did not find a Darshan dataset
recent enough to integrate heatmaps from,
which could solve the issue raised by operation
aggregation.

Exascale Computing Project

Motivations Methodology Results Conclusion

19/21

https://www.exascaleproject.org/wp-content/uploads/2022/06/darshan-overview-ecp-bof-5_2022.pdf

Future Work and Perspectives

Future Work:
Improve the selection of representative traces: for some applications the selection of a representative
trace is an hard task. We plan on improving the methodology by clustering Darshan traces of a single
application based on their size and select one representative trace per group.
Implementation of unsupervised classification: the patterns are classified according to classes defined
beforehand. We plan to add an automatic classification step to group traces automatically.
Further improve the definition of thresholds: some thresholds were defined empirically from the Blue
Waters dataset. We plan to work on a better way to define them.

Perspective:
I/O-optimized scheduling: feed the I/O classes to a scheduler when submitting a job. The scheduler can
then adopt strategies to avoid contention on the PFD (e.g. don't start at the same time 2 jobs that read at
start).

Motivations Methodology Results Conclusion

20/21

THANK YOU FOR YOUR ATTENTION!

Access this presentation

If you have access to I/O traces (Darshan or others) and can share them, don't hesitate
to reach us () so we discuss how we can work together!theo.jolivel@inria.fr

mailto:theo.jolivel@inria.fr

